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Timescales and lengthscales
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Not to scale….
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Scales of magmatic processes
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Conductive heat transfer  κ = 10-6 m2 s-1
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Thermal diffusion processes        
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Chemical diffusion processes related by κ = 10-10 to 10-11  m2 s-1
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Chemical diffusion very slow but 
effective at small scales and where 
thermal gradients are low!
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Chemical diffusion processes related by κ = 10-10 to 10-11  m2 s-1
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Forming a deposit

Magma physics | Jess Robertson - CODES Masters course

Immiscible sulfide 
liquid forms via 
assimilation of S-rich 
wall rocks

1

+S

+S

Magma

in

Droplets (now enriched with 
metals) separate from magma 
and form deposit.

3

Magma

outSulfide droplets mix 
with magma & 
scavenge metals

2

Sulfide differentiation, 
migration, recycling, sulfide-
silicate interactions

4
How long?
And how far?



Modified from Lesher and Keays, 2002

How do we get the extra S into the magma?
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First conclusion: the quickest way to add S to magma is by direct incorporation of  

country rock (Robertson et al., Economic Geology, 2015)



Modified from Lesher and Keays, 2002

How do we get the extra S into the magma?

X



Disaggregation and transport of xenoliths

(1mm-1m)



Convective mixing 
in a boundary layer 
around anhydrite 
dissolving into 
mafic magma
(Iacono-Marziano, 
2017, in press)

Heat conduction from magma into 
xenolith (slow) causing melting in 
narrow boundary layer at contact
• Stirring speeds the process
• Stirring favoured by low 

viscosity, turbulent flow, sinking 
of xenolith
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Conclusion: xenoliths (and sulfide) 
might be transported a long way 
before they melt
Sulfide liquid transport might be 
primarily within disaggregating 
xenoliths, rather than as free 
droplets

Xeno meltin
g

Xeno melting

Xeno sin
king

Xeno sinking



Bed load drag mechanism

Sed S source Entrained bed-load sulfide liquid – low 
R, Ni, PGE poor

Sed S source Entrained sulfide liquid 
droplets – Ni, PGE rich

Dispersion, suspension, dissolution Sulfide liquid droplets entrained 
transported and dissolved

Sulfides dissolved Sulfides re-
precipatedDroplets dispersed



Sed S source Entrained sulfide liquid 
droplets – Ni, PGE rich

Dispersion, suspension, dissolution Sulfide liquid droplets entrained 
transported and dissolved

Sulfides precipated
Droplets dispersed

Sed S source

Sulfide liquid droplets entrained 
transported and dissolved

Xenoliths 
melt/dissolve, 
accumulate

Sulfides 
precipatedXenoliths entrained Liberated sulfides 

entrained

Transport in xenoliths



Forming a deposit

Magma physics | Jess Robertson - CODES Masters course

+S
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Magma

in

Magma

outSulfide droplets mix 
with magma & 
scavenge metals

2

How long?
And how far?



Detachment, sinking and upgrading of 
dense sulfide droplet

Compositional boundary layer around sulfide droplet

Sinking sulfide droplet disrupts its own boundary layer

Pt, N
i etc diffu

se IN

S diffuses OUT FASTSLOW

Robertson et al., 2016, J Petrology



Robertson et al 2016

Slowest dissolution
~0.1-1 mm size



Chaotic laminar flow Fully turbulent

Robertson et al., J Pet 2016

Droplet breakup during flow
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Droplets may SETTLE, BREAK UP or COALESCE during transport



Droplet radius
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Droplet radius
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Can droplets coalesce?
• Coalescence favoured in 

large droplets, much less 
likely in small ones
• Droplets don’t coalesce 

during flow unless droplet 
density is very high
• Significant coalescence 

probably only occurs after 
droplets have accumulated 
in high abundance

De Bremond d’Ars et al, 2001 EPSL

Draining melt film 
between droplets

One droplet deforms 
the other, film gets 
narrower, drainage 
rate decreases

Shear in host magma



Coalescence?

De Bremond d’Ars et al 2001 EPSL

Experimental result: no coalescence of 
droplets during vertical transport for 
Bond numbers 0.01-5 



Vesicles as analogues of sulfide droplets – non-
coalescence behaviour

Drga2
___________

s

Owens Valley California, photos by 
Callan Bentley

Sulfide droplet ~ 1 cm 
has similar 
“deformability” as a 
bubble ~ 4 mm

Ease of 
coalescence



Droplet radius
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Conclusion: breakup, not coalescence , dominates during droplet transport
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undersaturated” mafic 
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Chemical equilibration 
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very slow compared with 
transport and settling 
rates

Hawaiian flow fields

LIP lava flows

Droplet breakup







• When you have lots of droplets and 
crystals they interact!
• At high particle densities, the  dynamics 

of the suspension take over from the 
individual particles

How do we deposit droplets?



Trapping and concentrating droplets in chaotic laminar flows
Analogue fluid experiments

Concentration of suspended 
particles in stable eddies

https://docs.google.com/file/d/0Bye8F7kyztwOc29pMkpTZnlERUE/edit



Mixing in chaotic conduit flows

Magma chaos  |  Jess Robertson, Guy Metcalfe and Steve Barnes40 |

Flow directionKAM tube

Chaotically stirred regions



Magma chaos  |  Jess Robertson   |   12th IPS, Yekaterinburg41 |

Droplet trapping https://www.youtube.com/watch?v=PWUFm0PUUjQ
movie

https://www.youtube.com/watch?v=PWUFm0PUUjQ


Secondary instabilities

Magma chaos  |  Jess Robertson, Guy Metcalfe and Steve Barnes42 |

Local particle density affects particle velocities
“Traffic jam dynamics” – particle waves propagate
through KAM regions.

Have a Guinness 
for science

Particles go this way

Wave goes this way

Jump to movie



Trapping and concentrating droplets in chaotic laminar flows
Analogue fluid experiments

Concentration of suspended 
particles in stable eddies

https://docs.google.com/file/d/0Bye8F7kyztwOc29pMkpTZnlERUE/edit



Sulfide liquid pool

Dispersion, suspension, dissolution Sulfide liquid droplets entrained and 
transported

Sulfides entrained, breakup Sulfides re-precipated
after concentration in 
KAM tubes

Droplets entrained



Horizontal flow at dyke 
step-overs



Nkomati (photo from Wolf Maier)



Elutriation column

Fluid in

Fluid out

Suspended 
dense 
particles



Late stage mobility of sulfide during 
magma drain-back phase

Lava drainback, 
Halemau’mau
Lava lake, 
Kilauea

Orr et al 2015





• Magma flow is the fastest of 
all the essential processes

• Rate of melting of xenoliths is 
an important control on 
sulfide liquid generation

• Sulfide liquid may be 
transported largely within 
melting xenoliths

• Sulfide droplets settle or 
segregate much faster than 
they can equilibrate

• Ore formation requires multi-
stage recycling in long lived 
trans-crustal conduit systems

Take home messages: 
Scaling relationships are key
Kinetics matter

Sudbury impact



• Tube- or funnel-shaped conduits
• Thermal/mechanical erosion of floor 

and roof rocks
• Cross cutting massive ores
• Abundant “taxites” – contaminated, 

vari-textured to pegmatoidal volatile-
rich gabbros

• Breccia ores 

Mafic intrusion-hosted

• Lava tubes or channels
• Thermal/mechanical erosion of floor 

and roof rocks
• Mainly conformable ores at basal 

contacts 
• No “taxites” – contaminated 

pyroxenites sometimes
• Breccia ores rare, restricted to 

passive intrusion breccias

Can we explain some of these differences?

Komatiite-hosted
Komatiite hosted and mafic intrusion hosted ores: similarities, differences



Detection and evaluation criteria – silicate signals
• High abundances of cumulate rocks, particularly olivine and chromite bearing 

cumulates.

• Characteristic tube-like morphologies, forming a continuum with elongate boat-

shaped flared or blade-shaped dykes, in otherwise more convoluted intrusive 

systems.

• Evidence for strong interactions with country rocks such as xenoliths (particularly 

strongly reacted xenoliths showing evidence of extensive melt extraction, as at 

Voisey’s Bay); marginal breccias; large thermal aureoles; pegmatoidal marginal rocks 

(“taxites”); characteristic zoning patterns in cumulus silicates

• Proxies for anomalously slow magmatic cooling rates in relation to small size of 

intrusion such as well developed coarse-grained poikilitic textures; extensive thermal 

aureoles;. 

• Evidence of sulphide liquid fractionation into Cu-Pt-Pd rich and Ni-rich, Cu poor 

components, a process that requires environments of slow and prolonged cooling. 



Thanks for listening!        steve.barnes@csiro.au


