

Recent developments in komatiite Ni-Co sulfide deposits

Steve Barnes

CSIRO Mineral Resources

Australia's National Science Agency

Running theme: how and why are komatiite-hosted different from mafic hosted Length and timescale story – incl. Yao and Mungall Updated volcanology model, genetic model overview Disseminated sulfide ores – deposition mechanisms Moran, sulfide emplacement, infiltration-melting zones and preservation Lithochem tips and resources

Komatiite hosted and mafic intrusion hosted ores: similarities, differences

Mafic intrusion-hosted

- Tube- or funnel-shaped conduits
- Thermal/mechanical erosion of floor and roof rocks
- Cross cutting massive ores
- Abundant "taxites" contaminated, vari-textured to pegmatoidal volatile-rich gabbros
- Breccia ores common

- Lava tubes or channels
- Thermal/mechanical erosion of floor and roof rocks
- Mainly conformable ores at basal contacts
- No "taxites" contaminated pyroxenites sometimes
- Breccia ores rare, restricted to passive intrusion breccias

Komatiite-hosted

Dynamic physical systems

- 1000s of km scale
- Focus mass, momentum and heat into one place
- Transient, highly localised in space and time
- Multi-scale processes feeding into one another

Timescales and lengthscales

Origin of komatiite-hosted ores – the substrate erosion model

Prolonged flow heats country rocks Incorporation/assimilation into magma Melting of external sulfide component to mag-sul liquid

Meet the Jess-o-Gram...

Available online at www.sciencedirect.com

ScienceDirect

Geochimica et Cosmochimica Acta

Geochimica et Cosmochimica Acta 305 (2021) 185-211

www.elsevier.com/locate/gca

Kinetic controls on the sulfide mineralization of komatiite-associated Ni-Cu-(PGE) deposits

Zhuo-sen Yao, James E. Mungall

Komatiite Jess-o-Gram

The R factor

Mass balance (conservation of mass)

Partition coefficient – conc of i in sulfide = D x conc in magma

Check for

Available online at www.sciencedirect.com ScienceDirect

Geochimica et Cosmochimica Acta

Geochimica et Cosmochimica Acta 305 (2021) 185-211

www.elsevier.com/locate/gca

Kinetic controls on the sulfide mineralization of komatiite-associated Ni-Cu-(PGE) deposits

Zhuo-sen Yao, James E. Mungall

1

Re-entrainment and upgrading

Take-aways:

- Sulfides are deposited km from original assimilation site
- Sulfide tenors controlled by fluid dynamics of transport

Sulfide transport and deposition mechanisms

Deposition and recycling

Low-energy channel, abundant sulfide, slow equilibration = low R

Ore compositions controlled by fluid dynamics more than by magma composition

Komatiite hosted and mafic intrusion hosted ores: similarities, differences

Mafic intrusion-hosted

- Tube- or funnel-shaped conduits
- Thermal/mechanical erosion of floor and roof rocks
- Cross cutting massive ores
- Abundant "taxites" contaminated, vari-textured to pegmatoidal volatile-rich gabbros
- Breccia ores common

- Lava tubes or channels
- Thermal/mechanical erosion of floor and roof rocks
- Mainly conformable ores at basal contacts
- No "taxites" contaminated pyroxenites sometimes
- Breccia ores rare, restricted to passive intrusion breccias

Hotter, less viscous magmas result in

- Easier assimilation of country rock
- More rapid assimilation of xenoliths and equilibration of sulfide droplets
- Faster cooling means less time for postemplacement sulfide infiltration/melting

Komatiite-hosted

Komatiites - developments

c)

Hill et al CSIRO flow-field model ~1995. Dunites extrusive in (relatively) proximal environment, feeding more distal sheet flows and thin flow fields

Setting of Mt Keith camp (Perring 2015)

Komatiite flow field model (Gole and Barnes 2020 OGR)

Disseminated ores in komatiitic olivine cumulates: genetic clues from sulfide textures

ASSIMILATION + CRYSTALLISATION

microCT visualisation of magmatic Ni sulfides nickel sulfide ore, Mt Keith

 Sample is "adcumulate = 100% olivine + ~ 3.5% sulfide liquid – no interstitial silicate magma

"Bleb" size and distribution of nickel sulfides (Mount Keith – Yakabindie deposits)

Size

(adding large drops/crystals)

(Assume bleb size = droplet size) Droplet sizes have semi-log distributions like populations of growing crystals

Size-distribution of sulfides: coarse sulfide samples

Two populations – both with semi-log

SCSS = S content at sulfide liquid saturation

In-situ nucleation-growth mechanism for cumulates

Adcumulates: Prolonged turbulent flow of lava over a bed of hot crystals.

CSIRO

Hypothesis: small blebs are the result of in situ nucleation/growth....

The modal % of small sulfide blebs in the adcumulate should match the predicted cotectic proportion between olivine and sulfide

Conclusion : small blebs are the result of in situ nucleation/growth....

Size-distribution of sulfides

Two populations – both with power law distribution. Why? Both in situ nucleation and growth and droplet breakup generate powerlaw size distributions

In situ nucleation and growth of droplets at deposition site

Power-law size distribution generated by breakup of large droplets during transport?

(Godel et al., J Pet 2013)

So what?

CSIRC

- Disseminated ores are mixture of in-situ cotectic and transported entrained droplet populations
- Ore deposition can happen a long way from the original S source
- Purely cotectic sulfides are not a good indicator of proximity to high grade ore – although they may have reasonably high tenors (R = 100-200). Coarse blebs with high (> 2 ppm) Pd are better indicators of proximity to high-grade ore

A "Kambalda Type" - komatiite lava flows	
Flow top Olivine-rich channel fill Komatiite	
Sulfide orebody - matrix/disseminated Sulfide orebody - massive ore Basalt	
	Komatiite hosted deposits Ribbon-shaped orebodies
0 100 m	formed in long lava tubes or

channels

Emulsion textures and breccias at a sulfide-silicate infiltration-melting front: Moran Shoot, Kambalda

Channel

Komatiite - olivine mesocumulate

Pillow basalt

Matrix/disseminated sulphides

Massive Fe-Ni-Cu sulphides

IIIIii

Random-spinifex texture

. Komatiite - olivine orthocumulate

Platy-spinifex texture

Sulfide-silicate infiltration-melting front: Moran Shoot, Kambalda

(False colour image, Cr red, S green and Si blue)

S

Sulfide-silicate infiltration-melting front: Moran Shoot, Kambalda

Hydrofractured basalt clasts with sulfide penetrating along fractures

Chromite disappearing downwards

Sulfide-silicate infiltration-melting front: Moran Shoot, Kambalda

"Floating" basalt plumes

h

"Hydrostatic" Differential pressure at tip of sulfide network increases as veins propagate downwards

Hydrofractured basalt with sulfide penetrating along fractures

Moran Shoot pinchout zone

Silicate-sulfide melting front

5

Silicate-sulfide emulsion texture

Moran Shoot pinchout zone

National Research FLAGSHIPS Minerals Down Under

'WW.Csiro.a

Emulsions – vinaigrette or mayonnaise?

Vinaigrette...

Oil droplets in water...

Mayonnaise – water droplets in oil...

Sulfide in silicate (basalt) liquid (Mayonnaise)

Silicate (basalt) in sulfide liquid (Vinaigrette)

Sulfide melt can excavate its own "traps"

Physical properties of silicate and

Melt type	Density (ρ) (kg m ⁻³)	Dynamic viscosity (µ) (Pa s)	Kiner (m² s
Fe sulphide Cu sulphide Komatiite Basalt Dacite	4000 5200 2800 2600	2×10^{-2} 2×10^{-2} 1 100 1×10^{4}	5 × 3·8 × 3·5 × 3·8 × 5 m ²
Melt type	Prandtl number Pr	Schmidt number Sc	Lewis
Komatiite Basalt Dacite	350 38000 5 × 10 ⁶		7100 1000 1000
Sulfide liquids are VERY dense VERY runny VERY efficient carri	iers of heat		

Sulfide melt infiltration front, base of the Oktyabrysky massive sulfide sheet. This is a melting raft of footwall metasediment floating up into sulfide but still attached to the floor. Photo courtesy of Nadya Krivolutskaya and organising team of 13th International Pt Symposium, Russia, 2013.

Deposit Scale

CSIRO

Recognising favourable volcanology

In komatiites, Ni & MgO= strong correlation (fractionation and accumulation of olivines) -> Ni-MGO plots

WMC approach 70s-80s

Ni/Cr ratios used to delineate ore-related channels *Picks up olivine and nickel sulphide rich channel facies*

 \rightarrow Not much more efficient than Ni alone

- Detect favourable hosts
- Detect distal footprints of ore formation e.g. PGE, Ni depletion
- Detect vectors towards ore trace PGE enrichments/depletions
- Distal resistate mineral indicators Ni and Ru in chromite

For whole rock major elements: need to correct for volatile addition (correct to 100% H2O-CO2 free) and for sulfide component.

Deposit Scale

SGA | Lithogeochem and Mineral Chem in Ni exploration | Steve Barnes | August 2019

Komatiites and komatiitic basalts

Very small amount of sulfide extraction has a very big depletion effect

Greenstone belt scale

Subtle positive and negative anomalies in PGE (Pd-Pt in particular) in komatiites host units Heggie et al., 2012 Barnes et al., 2013

SGA | Lithogeochem and Mineral Chem in Ni exploration | Steve Barnes | August 2019

Deposit Scale

5 Subtle positive and negative anomalies in PGE (Pd-Pt in particular) in komatiites host units (remember that the PGE content of komatiites will depend on their Barnes et al., 2013

age) → Example at Long Victor : subtle anomalies extending up to 400m away from the massive sulphides

Deposit Scale

5 Subtle positive and negative anomalies in PGE (Pd-Pt in particular) in komatiites host units Heggie et al., 2012 Barnes et al., 2013

Whole rock chemistry in relation to distance from ore shell

- Channel zones
- ▲ ♦ Flank zones

Deposit Scale

5 Subtle positive and negative anomalies in PGE (Pd-Pt in particular) in komatiites host units Heggie et al., 2012 Barnes et al., 2013

Lithogeochemical vectoring, Maggie Hays deposit, Lake Johnston Belt, WA

The ratio Pt/Ti provides a much more effective and recognisable geochemical halo around Ni sulfide orebodies than simple Ni concentration, which has a wide variability in the background host rock. Pt/Ti anomaly extends ~250 m from orebody (defined by 0.4% Ni ore shell).

Data from Heggie et al., 2012, Economic Geology.

Sampling probability

Kambalda example

SLM contains ~ 1.5 mtonnes contained Ni, average tenor around 15% in sulfide, = ~ 10^7 tonnes sulfide

Typical R factor range 100-500 , implies volume of magma involved in ore formation =~ 3 x 10⁸ to 2 x 10⁹

Estimated volume of flow field – SLM – 100 km x 50 km x 200m = 10^{12} m³

Depleted magma represents ~ .03 to .2 % of total volume of flow field.

The sampling problem...

Volume of SLM flow field

- Typical R factor range 100-300, implies volume of magma involved in ore formation =~ 3 x 10⁸ to 2 x 10⁹
- Estimated volume of flow field SLM – 100 km x 50 km x 200m = 10¹² m³
- Depleted magma represents ~ .03 to .17 % of total volume of flow field.

