Mineral geochemistry and textural relations of Ni sulfides and Co arsenides ores from the atypical Avebury nickel deposit, western Tasmania, Australia

Jose L Barillas-Diaz¹, David R Cooke¹, Lejun Zhang¹, Wei Hong¹, Yamila Cajal¹, Tony Chisnall² and Josh Denholm²

> ¹ CODES, Centre for Ore Deposit and Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania, 7001, Australia

² Avebury Nickel Mine, Trial Harbour Road Zeehan, Tasmania, 7469, Australia

joseluis.barillasdiaz@utas.edu.au

6th August 2024

Acknowledgements

CODES Supervisory team Regional Research Collaboration team CODES Analytical Laboratories (CAL)

Avebury Nickel Mine staff Geological department

Mineral Resources Tasmania Mornington Core Library

Central Science Laboratory (CSL) Microscopy and microanalysis facilities Mt Agnew, Zeehan mining district, western Tasmania

International Ni-Cu Symposium

Thunder Bay 2024

Outline

Introduction

- Background
- Nickel deposits in Australia

Geological setting

- Nickel occurrences in western Tasmania
- A nickel deposit in the world-class Zeehan tinsilver-lead-zinc district

Avebury Ni deposit

- Stratigraphy
- Mineralization
- Implications of Geochemistry
- Genetic model

Conclusions

Cobaltite (CoAsS), Avebury Ni mine, Jose Barillas (2023) Stereo zoom microscope image "Aurora Australis, Zeehan", Josh Denholm

Avebury — A puzzling nickel mineral system

Is Avebury a hydrothermal magmatic Ni-S deposit?

JORC Classification	Tonnage (Mt)	Ni (%)	Ni (kt)	Co (ppm)	Co (kt)
Indicated	8.7	1.0	87	244	2
Inferred	20.7	0.8	166	223	5
TOTAL	29.3	0.9	264	229	7

Avebury nickel mine (2023)

The geology of western Tasmania is unique in Australia

Tectonic setting — A complex history

At least five major tectonic events:

1. Early to middle Cambrian

Tyennan Orogeny: Obduction of the western Tasmania ophiolite, Cambrian ultramafic – mafic complex

- 2. Middle Cambrian
- E W extension and eruption of the submarine Mt Read Volcanics, which are hosts of VHMS deposits
- 3. Late Cambrian

Delamerian Orogeny: E - W compression and basin inversion

4. Middle Devonian

Tabberabberan Orogeny: N and W – NW folds

5. Late Devonian to Carboniferous

Post-collisional granite magmatism related to Sn - W - base metals deposits

Geology and mineralization — Zeehan mineral field

Nickel occurrences — Zeehan mineral field

Nickel occurrences have a positive correlation with Total Magnetic Intensity (TMI) anomalies

Avebury Ni deposit geometry — Plan view

Avebury Ni deposit geometry — Cross section

Avebury — Nickel and cobalt mineralization in serpentinized ultramafic

12

Avebury — Stratigraphy

Avebury — UA101

Mineralization in Crimson Creek

UA077: North Viking Ni: 1068 ppm ICP @ 79.85 to 81.15

7 cm

Actinolite

Mineralization — Sulfides and arsenides

The mineralization hosted in the Ultramafic – mafic Complex

Ore type 2 Magnetite – rich serpentinite: magnetite + antigorite + brucite

Ore type 2

Ore type 1 Deformed massive nickel sulfide

Ore type 3: massive nickel sulfide in Crimson Creek UA092 @ 32.10- 32.50

Skarn — serpentinite mineralization

Ore type 4

Skarn serpentinite: Metasomatized serpentinite (hydrous retrograde skarn phase): lizardite -tremolite + diopside + albite + magnetite - wollastonite

Skarn mineralization

Mineralization — Skarn

Metasomatism in Avebury

Gersdorffite (NiAsS) Ulmannite (NiSbS)

Breithauptite (NiSb) in hydrothermal veins associated with other nickel sulfides and nickel - cobalt arsenides

Whole rock assay geochemistry

Whole rock assay: Ni vs Cu and Co

LA-ICP-MS trace-element mapping in NiS

LA-ICP-MS trace-element mapping

LA-ICP-MS trace-element mapping in CoAs

10⁴ 10³

10² 10¹ 10⁰

 10^{-1}

10⁻²

Possible genetic model for Avebury

NiS is the result of metasomatism of

mafic-ultramafic rocks

NiS mineralization is a product of low-

temperature alteration of magmatic Ni-

Cu-PGE sulfides

NiS mineralization produced by

remobilization from magmatic dikes and

sills from Crimson Creek

Whole rock geochemistry, trace elements and ICP-MS mineral maps suggest that Avebury is a hydrothermal remobilized from a magmatic source

Avebury rocks and mineralization display strong metasomatism generated from the Heemskirk granite fluids

Co-Ni arsenides have formed where the retrograde granite-derived fluids have penetrated existing nickel and cobalt sulphides

Ultramafic sills and dikes from Crimson Creek show anomalous values of Ni-Co

Questions?

Internet in the second

uu. O4 Phalls

Mt Agnew, Avebury Ni mine, western Tasmania