Apatite as an indicator for volatile characteristics in the genesis of the Marathon Cu-PGE deposit, northwestern Ontario

Maryam Shahabi Far Department of Earth Sciences, Carleton University

*Dave Good, University of Western Ontario

lain Samson, University of Windsor

* presenter

(maryam.shahabifar@carleton.ca)

Geological Setting

- Proterozoic intrusive emplaced at 1106.3 ± 1 Ma
- northeast shoulder of the Midcontinent Rift
- unmetamorphosed, undeformed

Apatite textures and chemistry

Conclusion

Geology of the Coldwell complex

Eastern Gabbro Suite

- Geordie Lake Intrusion Western Gabbro Series
- Alkaline Gabbro Series

Syenitic Rocks

- Iron-Rich Augite Syenite
- Amphibole Syenite
- Amphibole Quartz Syenite
- **Recrystallized Amphibole** Quartz Syenite
- Nepehline Syenite
- Amphibole Natrolite-
- Nepheline Syenite

Volcanic Rocks

- Archean Metavolcanics
- Mafic Volcanic, Subvolcanic, and Hypabyssal Intrusives

Modified after Good et al., 2015

Characteristics of mineralized zones forming the Marathon PGE-Cu deposit

Characteristics of mineralized zones forming the Marathon PGE-Cu deposit

Mineralization Zones	Sulfide Occurrence	PGE Grade (g/t)	S Content (%)	Cu/Pd
Footwall Zone	stringer to net-textured Po>Ccp ± Pn ± Py	<0.5	2 to 4 %	> 10000 to 35000
Main Zone	Disseminated Ccp, Po ± Pn ± Py	0.8 to 5	0.05 to 1%	1000 to 10000
W Horizon	Disseminated Ccp, Bn > Po ± Pn ± Dg ± Py	1 to 70	Trace to <0.4%	< 1000

Apatite textures and chemistry

Conclusion

R-Factor model for Marathon Mineralization

High R-factors can explain most Cu/Pd data

Kerr-Leitch multistage dissolution upgrading model requires 15 to 25 pulses and > 95% of initial sulfide liquid removal which seems improbable

Therefore, need to examine either Pd addition or Cu loss

Geological Setting Petrography of the TDLG Apatite textures and chemistry

Conclusion

Was there Pd-enrichment by some hydrothermal mechanism?

•

Watkinson and Jones, 1996

Example, evidence presented by Watkinson and co-workers in 1980's and 1990's such as NaCl rich fluid inclusions on edges of sulphide grains that contain Pd-Ag-Te-Pb mineral

Apatite textures and chemistry

Conclusion

For samples with very low Cu/Pd (60 to 1000)

Evidence for Pd-enrichment by magmatic process

- Correlation between Pd and Pt (Pd/Pt between 2 and 5)
- Positive associative relationship between Te and Pd+Pt

Evidence for S, Cu and Au loss by hydrothermal process

- No correlation between Au and Pd
- No correlation between Cu and Pd
- No correlation between S and Pd
- In extreme cases, very low Cu (~200 ppm), Au (<0.03 ppm) and S (<0.01%) occur in samples with high Pd+Pt (> 2 to 3 ppm and up to 70 ppm)
- Inverse relationship between Cu/Pd and Pd/Au

Geological Setting Petrography of the TDLG Apatite textures and chemistry

Conclusion

Therefore, W horizon mineralization best defined by: (a) magmatic accumulation of PGE at high R-Factor, and (b) subsequent overprint by hydrothermal mechanism and removal of S, Cu and Au

50 samples from a 19 m thick interval in W Horizon (average grade of 2.5 ppm Pd+Pt over 19 metres)

Why Apatite?

- Apatite crystallizes over a very long period during crystallization from early crystallization to very late hydrous stage
- Can apatite textures / compositions tell us the nature of late-stage fluids responsible for S, Cu and Au mobility?
- Samples studied are representative of the complete sequence from high Cu/Pd (Footwall type mineralization) to very low Cu/Pd (W horizon type)

Petrography of the TDLG

- Vari-textured, medium-grained to pegmatitic gabbro
- plagioclase, olivine, sub-ophitic clinopyroxene
- minor apatite, biotite, and amphibole

Apatite textures and chemistry

Conclusion

Apatite textures and chemistry

Apatite Textural and Chemical Variation

Early Apatite (very fine grained includions in plagioclase)

Late Apatite

Late Apatite

Apatite textures and chemistry

Conclusion

Late apatite (evolved interstitial melt)

Apatite textures and chemistry

Conclusion

Monazite Formation

- □ Fluid-induced coupled dissolution-reprecipitation process
 - F-apatite + H_2O
 - F-apatite + $40/60 \text{ CO}_2/\text{H}_2\text{O}$
 - F-apatite + KCI
- Coupled substitution:

1) Ca²⁺ + P⁵⁺ = REY³⁺ + Si⁴⁺ 2) 2 Ca²⁺ = REY³⁺ + Na⁺

Apatite textures and chemistry

Geological Setting > Petrography of the TDLG > Apatite

Apatite textures and chemistry

Apatite textures and chemistry

Conclusion

Homogeneous Early apatite

Late apatite shows:

- 1. REE enrichments related to evolving interstitial melt
- 2. Cl enrichment related to metasomatism by Cl-rich hydrous fluid
- 3. Patchy carbon enrichment
- 4. Replacement apatite + monazite +/- allanite

Cu, Au and S loss associated with CI- and Carbonic -bearing hydrous fluid probably derived during late-stage crystallization of the Two Duck subsolidus of the host gabbroic intrusion

Acknowledgement

Dr. David Good – Western University
Dr. Iain Samson – University of Windsor
Dr. James Mungall – Carleton University
Chanelle Boucher – Generation Mining
Dr. Mathew Brzozowski – British Colombia Geological Survey

Thank You

