2024 International Ni-Cu Symposium – Thunder Bay, ON, Aug 6-8, 2024

Primitive arc magmatism and the development of magmatic Ni-Cu-PGE mineralization in Alaskan-type ultramafic-mafic intrusions

Milidragovic, D., Nixon G.T., Spence, D.W., Nott, J.A., Goan, I.R., Scoates, J.S.

Message:

- Primitive arc magmas are inherently water-rich and oxidized and very different from intraplate and MOR magmas.
- Because of this, the styles of magmatic mineralization in arcrelated ultramafic-mafic intrusive rocks are very different from those of conventional Ni-Cu deposits

Outline

- Research rationale
- Primitive convergent margin (Alaskan-type) intrusions
- Mineralization
 - Crustal assimilation
 - Intrinsic magma properties

Research rationale: need for new Ni (Cu-PGE) resources

Research rationale: arc petrology and crust-mantle transfer

- Volcanic rocks are modified through differentiation, assimilation, and degassing of volatile-rich primary arc magmas
- Complimentary study of high-T cumulates is necessary for holistic understanding of arc magmatism and mantlecrust metal transfer

Primitive convergent margin (arc) intrusions

Primitive convergent margin (arc) intrusions

Alaskan-type intrusions:

 Juvenile island arc terranes (Quesnellia, Stikinia, Yukon-Tanana): e.g., *ca.* 206-204 Ma Tulameen, *ca.* 187-186 Ma Polaris, *ca.* 189-185 Ma Turnagain (3381 kt Ni)

Giant Mascot-type intrusions:

Continental arc (*ca.* 93 Ma Giant Mascot)

Alaskan-type intrusions

Characteristic lithology

Concentrically zoned Blashke Island Alaskan-type intrusion

Himmelberg and Loney 1995 USGS

Alaskan-type intrusions

- Small (<18 km x 6 km), mantle-sourced, zoned, ultramafic-mafic bodies
- Transcrustal magma conduits/feeders to arc volcanos
- May contain magmatic mineralization
- Increasing importance of serpentinite (CO₂-mineralization +H₂)

Cashman et al. 2017 Science

Alaskan-type intrusions

- Small (<18 km x 6 km), mantle-sourced, zoned, ultramafic-mafic bodies
- Transcrustal magma conduits/feeders to arc volcanos
- May contain magmatic mineralization
- Increasing importance of serpentinite (CO₂-mineralization +H₂)

Dunite – Polaris intrusion

Spence et al. 2024 Lithos

Multiple dunite dike generations X-cutting layered chromite schlieren

BSE scans of dunite thin-sections

Milidragovic et al. 2024 GSC OF 9201

Alaskan-type intrusions: rock types Milidragovic and Cleven 2023 GSC OF 8946

Spence et al. 2024 Lithos

 Chaotic mixing, comingling, and hybridization at different T and rheological states

Cumulate intermingling and hybridization

Mechanical disaggregation of dunite

Mechanical disaggregation of clinopyroxenite

Spence et al. 2024 Lithos

 Chaotic mixing, comingling, and hybridization at different T and rheological states

Milidragovic and Cleven 2023 GSC OF 8946

Cumulate intermingling and hybridization

Episodic magma injection at the Lunar Creek Complex

Milidragovic and Cleven 2023 GSC 8946

Cumulate intermingling and hybridization

Nixon et al. in review CMP

- Hornblende-rich evolved rocks
- Feldspathic pods with accessory minerals →evolved residual liquids that locally reached H₂O saturation (e.g., breccias)

Alaskan-type intrusions: multi-stage emplacement

17

Alaskan-type intrusions: multi-stage emplacement

undeformed Alaskan-type complexes are concentrically zoned rock and have near-vertical funnel-shaped or pipe-like cross-sections?

18

Fig. 1. Lithograph of a platinum nugget with olivine and octahedral chromite, from the Tulameen district, British Columbia. (Kemp 1902, *USGS* in Cabri et al. 2022 *Ore Geol Rev*)

Magmatic mineralization in Alaskan-type intrusions

Magmatic mineralization

• 2 styles of mineralization

- Early Ni (Cu-Co) sulfide mineralization (e.g., Turnagain)
- Early PGM + late Cu-PPGE sulfide mineralization

Conventional magmatic (sulfide) deposits

 Margins of ancient cratons where large degree mantle melts (LIP, plume) are focused into crust along translithospheric pathways

а

What is unconventional about arcs?

Oxidation state of Alaskan-type intrusions

Oxidation state of Alaskan-type intrusions

- Moderately to strongly oxidized (logfO₂ ≥FMQ+1)
- Systematic differences between intrusions
- Variability within individual intrusions

Olivine-spinel fO_2 -T equilibria based on Ballhaus et al. (1991) and data of Milidragovic et al. (2024), Scheel (2007), and Webb (2023)

Crustal assimilation for early S-saturation

³⁴S/³²S for select Ni-Cu-PGE deposits

 Addition of S and/or reduction of oxidized ARC magma

 Little reduced (graphitebearing) assimilant needed

Necessary for development of Ni-sulfide deposits in arc settings! (e.g., Duke Island, Turnagain, Giant Mascot, Opiraukaomappu)

Oxygen fugacity (Δ FMQ)

- Chalcopyrite is fresh and shows a narrow range of magmatic, near-chondric δ³⁴S
- Other sulfides (po, py) reflect equilibration with oxidizing hydrothermal fluids
- Country rocks are strongly suprachondritic
- Assimilation played a minor role - sulfur in Polaris magmas is largely magmatic!

 Dunite-hosted, chromite-associated
PGE mineralization (Pt-enriched, Rudepleted vs. Ptdepleted, Ru-enriched)

result of high fO_2 ? (2021)

 High Ru/Ir at Polaris as result of "high" fS₂?

- Cu-PPGE rich sulfides at Tulameen, Polaris and Turnagain
 - Cu-rich (ccp-bornite) assemblages
 - High Cu-PPGE tenors

Composite Ccp-Bornite from Tulameen

Milidragovic et al., 2021 Can Min

(%

saturation (wt.

S content 0.4

 Hydrous primitive arc magmas undergo early auto-oxidation promoting S solubility (and increasing ΣS concentration)

Evolved oxidized
magma crystallizes
magnetite (MgO ≤ 6
wt.%) and undergoes
rapid reduction and
sulfide supersaturation

 Cu (bornite)-rich early sulfides consistent with reduced FeS through oxidation

 $6(Fe^{2+}S)_{melt} + 4O_2 = 2(Fe^{2+}O \cdot Fe^{3+}_2O_3) + 3S^{2-}_2$

 Ex., Polaris (BC), Champion zone at Tulameen (BC), DJ/DB zone at Turnagain (BC), experimental data

Composite Ccp-Bornite from Tulameen

Nixon et al 2020 GSC OF8722 Composite Ccp-Bornite from Polaris

Milidragovic et al., 2021 Can Min 32

Cumulate intermingling and hybridization

Mineralization in Alaskan-type intrusions: Petrological synthesis

- Exogenous (assimilation of wall rock) early dunite-hosted Ni-(Cu-Co) sulfide mineralization
- Endogenous early dunite-hosted PGM mineralization + later clinopyroxenitehosted Cu-PP<u>GE sulfide mineralization</u>

Conclusions

- Alaskan-type intrusions are dynamic, multi-episodic transcrustal magmatic systems
- Different primary fO₂, fS₂ (sub-arc mantle history), and different degrees of assimilation of variably reducing or S-rich rocks → different mineralization styles

THANK YOU!

Tsay Keh Dene First Nation, Takla First Nation, Chu Cho Environmental, Silverking Helicopters, Apex Geoscience, Benchmark Metals (Thesis Gold), D. Petts, M. Beauchamp, D. Schumann, R. Stern

TGI supported work

UNCLASSIFIED - NON CLASSIFIÉ

Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources,