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Introduction — Geological Setting
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Introduction — Impact Origin

Shatter cones in Mississagi Formation

Impact evidence
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Macroscopic Pseudotachylite vein at Trill

= Shatter cones,
pseudotachylite bodies,
breccias in country rocks

Microscopic

= PDFsin quartz and feldspar,
and shock mosaicism in
olivine

Geochemical

= Upper-middle crustal trace
element signature

= Crustal Sr-Nd-Hf-Os-Pb
Isotope signatures

Footwall Breccia along Highway 144 g




Introduction — Sulfide Ore Formation

Model A

= Complete dissolution of metals and sulfur in
superheated impact melt sheet

= Exsolution of immiscible sulfides upon cooling
and gravitational settling towards base

=  Accumulation of sulfides in
embayments/troughs by convective currents
and/or gravity-driven density flows

Problems:

Pb>S>Q0Os isotopic
composition of vs. relatively
homogeneous HI>Nd>>0s>S>Pb isotopic
composition of overlying impact melt

Model A T1: Sulfide exsolution and convective settling to contact
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Model A T2: Gravity flow into embayments, funnels, and troughs

a TS -2
p"f\’b\*../ )

...\../c-*

7\./

References: e.g., Golightly 1994 OGS, Keays & Lightfoot 2004 Min Pet, Li & Ripley
2005 Min Dep, Zieg & Marsh 2005 GSA, Lightfoot 2016 Elsevier




Introduction — Sulfide Ore Formation

Model B

* Pb-S-Zn-Cd-Rb-Cs-depleted melt sheet due
to variable devolatilization during impact

= Local thermomechanical erosion of S-bearing
footwall rocks to form local sulfide xenomelts

=  Accumulation of sulfide xenomelts in
embayments/troughs by convective currents
and/or gravity-driven density flows

Model B T1: Devolatilizated impact melt

) /
Objective — Use Hf-Nd-Pb-S isotopes to: ~n Ol = 7;/
= Determine homogeneity/heterogeneity of
Initial impaCt melt Model B T2: Local thermomechanical erosion of S- bearmg footwall rc-cks —
= Test variable impact devolatilization Lol nGe G2 2 7\-/

» Test validity of models for Ni-Cu-(PGE)

sulfide ore formation associated with the

S|C References: McNamara et al. 2017 Econ Geol, Lesher 2019 GAC-MAC, Wang et al.
2022 Econ Geol 4
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Introduction — Element Volatility

Condensation Temperature Tgy 10 -

Tgy IS defined as temperature at which
50% of element would condense from
solar nebula (Lodders 2003 Astrophys J)

Increasing volatility and therefore syn-
Impact element-loss of S>Pb>>Nd>Hf

S-Pb isotopes should be more
susceptible to post-impact contamination
than Nd-Hf

Initially superheated (>1700°C) impact
melt (e.g., Prevec&Cawthorn 2002 J of Geophys)
suggests even most refractory elements
may have experienced minor loss during
Impact
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Sampling and Methodology

North Range Main Mass

451600mE Modified after Ames et al. 2005 GSC

= Good Pb isotope database, but very little £
Hf and Nd isotope data available

519315

= No systematic sampling to test for both
stratigraphic and lateral variations

Sampling Strategy

» Representative samples of each
from 4 different
transects + selective footwall rocks

= Mafic Norite, Felsic Norite, Quartz
Gabbro, Granophyre

= Levack Gneiss Complex, Cartier
Granite, Joe Lake Gabbro

» Combination of LA-ICP-MS (Hf), and
whole-rock MC-ICP-MS (Hf-Nd-Pb) 529800mE

5132980mN
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Main Mass — Hf-Nd-PDb Isotope Characteristics
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Main Mass — Hf-Nd-PDb Isotope Characteristics
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Main Mass — Hf-Nd-PDb Isotope Characteristics

Pb isotope characteristics

= NR Main Mass relatively homogeneous
(except for Mafic Norite)

=  Contamination of melt sheet at base

= Heterogeneous NR Offset Dikes

= Significant Pb volatilization — strong
contamination effect during dike
emplacement

= NR Ores differ from overlying Main
Mass

= Shifted towards Superior Province

= Dominantly local sulfide source

Modified after Wang et al. 2022 Econ Geol; A2°7/204Pp = 1000 x [2°7/204Phg, 01
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Main Mass — Hf-Nd-PDb Isotope Characteristics

S Isotope characteristics

NR Norite relatively homogeneous
= Initially well-mixed impact melt

NR Ores are similar but more variable
than overlying Norite

= Contamination effect (S volatilization)

= Variable local sulfide sources

SR Ores differ from NR Ores
= Variable local sulfide sources

= Huronian-East Bull Lake-Nipissing as
likely sulfide sources

Modified after Wang et al. 2022 Econ Geol
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Main Mass — Mass balance/contamination effects

Hf Mass Balance  pesese
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Main Mass — Mass balance/contamination effects

Pb Mass Balance

=  Pbin NR contact ores varies much
more than permissible by non-
volatilized model

= 90% volatilization AND wide range
of target rocks required to explain
observed variability

= Modelling suggests low
magma:sulfide ratios

=  Consistent with local formation of
sulfides at base

Modified after Lesher 2023 GAC-MAC, mixing calculations after Lesher & Burnham 2001 Can Min
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Summary

Hf-Nd-Pb-S isotopic signatures of SIC record variable impact devolatilization (S>Pb>>Nd>Hf)

= Nd-Hf isotopes of Main Mass are relatively homogeneous, suggesting initially well-mixed impact
melt sheet

= Heterogeneous Pb isotope compositions in offset dikes and contact ores due to post-impact
contamination and dominantly local sulfide sources

* Homogenized impact melt and mass balance calculations support model in which sulfides
dominantly form locally at the base rather than exsolving from the impact melt
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Thank you — Questions?
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