

Hf-Nd-Pb isotopic evidence for variable impact devolatilization and its relevance for Ni-Cu-(PGE) sulfide ore formation in the Sudbury Igneous Complex

Dustin Peters, Michael Lesher, Edward Pattison Harquail School of Earth Sciences, Laurentian University dpeters@laurentian.ca

International Ni-Cu Symposium, Thunder Bay, 2024

Introduction – Geological Setting

Modified after Ames et al. 2005 GSC

529800mE

Chelmsford Formation

Onwatin Formation

Onaping Formation

Mafic and Felsic Norite

Granophyre

Sublayer

Offset Dikes

Granitoids

Nipissing Diabase

Cartier Batholith

Levack Gneiss

Benny Belt

Complex

Lower Elliot Lake Group

Southern Province (undiff.)

Archean and East Bull Lake intrusives

Quartz Gabbro

Introduction – Impact Origin

Impact evidence

Macroscopic

 Shatter cones, pseudotachylite bodies, breccias in country rocks

Microscopic

 PDFs in quartz and feldspar, and shock mosaicism in olivine

Geochemical

- Upper-middle crustal trace element signature
- Crustal Sr-Nd-Hf-Os-Pb isotope signatures

Footwall Breccia along Highway 144

Shatter cones in Mississagi Formation

Introduction – Sulfide Ore Formation

Model A

- Complete dissolution of metals and sulfur in superheated impact melt sheet
- Exsolution of immiscible sulfides upon cooling and gravitational settling towards base
- Accumulation of sulfides in embayments/troughs by convective currents and/or gravity-driven density flows

Problems:

- Heterogeneous Pb>S>Os isotopic composition of ores vs. relatively homogeneous Hf>Nd>>Os>S>Pb isotopic composition of overlying impact melt
- Exsolution and settling of sulfides is slow
- Not all embayments are mineralized

Introduction – Sulfide Ore Formation

Model B

- Pb-S-Zn-Cd-Rb-Cs-depleted melt sheet due to variable devolatilization during impact
- Local thermomechanical erosion of S-bearing footwall rocks to form local sulfide xenomelts
- Accumulation of sulfide xenomelts in embayments/troughs by convective currents and/or gravity-driven density flows

Objective – Use Hf-Nd-Pb-S isotopes to:

- Determine homogeneity/heterogeneity of initial impact melt
- Test variable impact devolatilization
- Test validity of models for Ni-Cu-(PGE)
 sulfide ore formation associated with the SIC

Introduction – Element Volatility

Condensation Temperature T₅₀

- T₅₀ is defined as temperature at which 50% of element would condense from solar nebula (Lodders 2003 Astrophys J)
- Increasing volatility and therefore synimpact element-loss of S>Pb>>Nd>Hf
- S-Pb isotopes should be more susceptible to post-impact contamination than Nd-Hf
- Initially superheated (>1700°C) impact melt (e.g., Prevec&Cawthorn 2002 J of Geophys) suggests even most refractory elements may have experienced minor loss during impact

5

Sampling and Methodology

North Range Main Mass

- Good Pb isotope database, but very little Hf and Nd isotope data available
- No systematic sampling to test for both stratigraphic and lateral variations

Sampling Strategy

- Representative samples of each Main Mass lithology from 4 different transects + selective footwall rocks
 - Mafic Norite, Felsic Norite, Quartz Gabbro, Granophyre
 - Levack Gneiss Complex, Cartier Granite, Joe Lake Gabbro
- Combination of LA-ICP-MS (Hf), and whole-rock MC-ICP-MS (Hf-Nd-Pb)

Hf isotope characteristics

- NR and SR Main Mass relatively homogeneous (including Mafic Norite)
 - Initially well-mixed impact melt
- NR Offset Dikes similar to overlying Main Mass
 - Little to no Hf volatilization → little to no contamination effect during dike emplacement

Pb isotope characteristics

- NR Main Mass relatively homogeneous (except for Mafic Norite)
 - Contamination of melt sheet at base
- Heterogeneous NR Offset Dikes
 - Significant Pb volatilization → strong contamination effect during dike emplacement
- NR Ores differ from overlying Main Mass
 - Shifted towards Superior Province
 - Dominantly local sulfide source

Modified after Wang et al. 2022 Econ Geol

Main Mass – Mass balance/contamination effects

Hf Mass Balance

- Hf in Main Mass is relatively homogeneous and can be explained by non-volatilized model
 - No Hf volatilization required during impact to explain observed variations

Main Mass – Mass balance/contamination effects

Pb Mass Balance

- Pb in NR contact ores varies much more than permissible by nonvolatilized model
- 90% volatilization AND wide range of target rocks required to explain observed variability
- Modelling suggests low magma:sulfide ratios
 - Consistent with local formation of sulfides at base

Summary

- Hf-Nd-Pb-S isotopic signatures of SIC record variable impact devolatilization (S>Pb>>Nd>Hf)
- Nd-Hf isotopes of Main Mass are relatively homogeneous, suggesting initially well-mixed impact melt sheet
- Heterogeneous Pb isotope compositions in offset dikes and contact ores due to post-impact contamination and dominantly local sulfide sources
- Homogenized impact melt and mass balance calculations support model in which sulfides dominantly form locally at the base rather than exsolving from the impact melt

Thank you – Questions?

Mineral Exploration Research Centre at the HARQUAIL SCHOOL OF EARTH SCIENCES