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Faults and Fault Structure

Complex structures that can serve as permeable
pathways through the upper crust

Often hosted within anisotropic and discontinuous |
lithologies, where physical and chemical properties =

can change over short distances

At shallow depths, pressure-dependent processes
(brittle fracturing and cataclasis) control
deformation

slip surface

Drag zone
(ductile)

Both high fluid pressure and the presence of clay
minerals play a role in the weakening of fault zones

(Fossen, 2016)



Typical Fault Zone Architecture

|) Protolith — host rock, typically (or ideally) unaltered
- Least altered / fractured, country rock

2) Damage zone — zone of high permeability and fluid flow, with increased fracture density
- Fault breccia, abundant mode one fractures, increased alteration

3) Fault core(s) — where the most slip was accommodated (high strain, low permeability)
- Gouge, cataclasite, principal slip surface, highest amount of localized shear
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|I. How does late faulting and associated fluids
affect PGE mineralization?

2. How does a fault zone structure vary with respect to the protolith?
l.
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Lac des lles Mine
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*  We can answer these questions by using
Lac des lles as a natural laboratory

Hudson

* Location in the Marmion terrane of the
Superior Province, 80 km north of Thunder

Bay, ON

* The abundance of drilling and
underground exposure provides an ideal
study area to focus on faults in mafic o~
protoliths
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Study Area
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Was Pd present originally?

In these systems, Ni and Pd often correlate and concentrate in pentlandite

Increased alteration should increase Ni/Pd ratios (Ni immobile, Pd moderately mobile)

If Pd was not originally present, these ratios would likely not change
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Field Observations

e Camp Lake Fault is a reverse fault displaced over 500 meters typically with the gabbronorite in fault contact
with tonalite (Vektore, 2020)

e Offset Fault is a reverse fault with 200-300 meters of displacement, with variable lithologies in hanging wall
and footwall
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Core Logging — Observed Lithologies

Detailed core logging observations

show 3 distinct lithologies: tonalite,
various gabbronorites, and chlorite-
actinolite schist

Alteration intensity increases with
proximity to faulting

Chlorite, tremolite, actinolite, talc,
and minor sericite in the
gabbronorites

Potassium feldspar, epidote and
sericite in the tonalites
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Petrography - Gabbronorite

* Primarily composed of plagioclase and pyroxene
* Strong chlorite, actinolite and talc alteration with proximity to faulting

* Fault core is dominated by chlorite (multiple varieties) and quartz

[ 500um |

Proximity to faulting



Petrography - Tonalite
* Primarily composed of quartz, plagioclase, biotite, and pyroxene
* Variably foliated, display strong sericite and epidote alteration, and reduced in grain size when faulted

* Tonalite fault core is dominated by albite, quartz, epidote and sericite

Proximity to faulting



Fault Rock Structures

The Camp Lake and Offset Faults are exposed parallel and normal to the fault slip surface
Both have a discrete principal slip surface and well-defined fault core of 5-10cm

Minor faulting is observable on the mm to cm scale, appearing to be consistent with the hypothesized kinematics




Fracture Density

* Systematic study conducted on damage zone to analyze fracture density with proximity to fault core
* 8 drill holes studied

* Density is averaged to fractures / meter
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Fracture Density

Plotted in log-log space to observe what type of trend is

seen in the data

meter

.

To quantify the damage decay exponent, we fit a power
law to the data as a function of distance from the fault (d
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Fracture Density

* All drill holes, within error, display a larger damage decay exponent in tonalites than the
gabbronorites

» Takeaway being that tonalites decay at a faster rate than the gabbronorites
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Geochemistry

Downhole plots display that the greatest
variation in major element oxides are observable
in the damage zone (~180m)

Following the expected trend as observed in
fracture density data

As expected, elements such as Na and K are
mostly variable in tonalites
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Alteration Geochemistry

Alteration plots exhibit percentage change
referenced to the most distal (least altered)
sample

Gabbronorites show positive concentration
changes in SiO2, TiO2, MnO, MgO, and Fe203, and
average losses in CaO, Na20O, and Al2Os

Tonalites exhibit relatively consistent SiO2 and
Na20, enriched K20, and negative Al203, TiO»,
CaO, MgO and Fe20s
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Chlorite Thermometry

* Host rock chlorite range from >350 C° to 250 C°

 Fault core chlorite appears to form at 200 C°, with late meteoric chlorite at 100 C° to 200 C°
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What does this mean?

Late faulting and fluids likely remobilized Pd during faulting

Fault zone structure varies a great deal with respect to
protolith

Chlorite precipitation in the fault core likely resulted in the
impeded development of a wider damage zone in the
gabbronorites
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