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Abstract The Sarah’s Find nickel deposit, located 4.5 km
north of the Mount Keith nickel mine, Western Australia,
was chosen as a case study to investigate the nature and
three-dimensional geometry of a geochemical halo created
by the hydrothermal remobilisation of base metals and plati-
num group elements into the country rock surrounding a small
massive Ni sulphide orebody. Portable and laboratory-based
XRF analyses were carried out on samples from a shear zone
localised along the basal komatiite-dacite contact that hosts
the orebody. A geochemical halo was identified that extends
along the shear zone up to 1780 m away from the massive
sulphides, parallel to a prominent stretching lineation.
Elevated Ni and Pd are associated with high As, Co, Cu and
S. Palladium and Pt concentrations increase with proximity to
massive sulphides (from 6 to 1190 ppb Pd). These anomalous
concentrations reflect the presence of sulfarsenides and sul-
phides, either physically remobilised and forming veinlets
close to the massive sulphides, or hydrothermally transported
and redeposited within the foliation. In situ laser ablation ICP-

MS indicates that Pd and Pt are hosted within these nickel
sulfarsenides. This Ni-Co-As-Pd geochemical halo, observed
around the Sarah’s Find ore body, is interpreted as forming syn
deformation, by the circulation of As-rich hydrothermal fluids
dissolving base metals, Pd and Pt from the orebody and
redepositing them along the sheared footwall contact.
Similar Ni-Co-Pd-Pt-As geochemical haloes could potentially
exist around any magmatic nickel sulphide mineral system
that has undergone a phase of arsenic metasomatism and
may be a generally applicable proximity indicator for nickel
sulphides in hydrothermally altered terranes.
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Introduction

The majority of magmatic nickel sulphide deposits have un-
dergone post-emplacement deformation, metamorphism and
metasomatism. The effect of deformation on these deposits,
particularly tectonic modification of massive and disseminat-
ed sulphides, has been studied by numerous researchers
(Bailey et al. 2006; Barnes et al. 1988; Barrett et al. 1977;
Bleeker 1990; Collins et al. 2012; Cowden and Archibald
1987; Cowden and Roberts 1990; Duuring et al. 2007, 2010,
2012; Findlay 1998; Heath et al. 2001; Layton-Matthews et al.
2007; Seat et al. 2004; Vukmanovic et al. 2014). The effect of
metamorphism and metasomatism on these deposits has been
documented by Donaldson (1981), Barnes et al. (1988) and
Goscombe et al. (2009), but there have been few studies
looking at the effects of metamorphism and metasomatism
on the composition of the country rocks and the possible
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creation of a secondary hydrothermal halo around nickel sul-
phide deposits.

Elemental dispersion due to metasomatism of massive
sulphides and remobilisation into the surrounding rocks has
been postulated for some time, but little research has gone into
determining the real nature of these haloes, their spatial extent,
and whether or not they could be used as an effective
exploration tool. A few studies, such as the work by Le
Vaillant et al. (2015) at the Miitel deposit, Hanley and Bray
(2009) at Sudbury (Canada), or Layton-Matthews et al. (2007)
in the Thompson Nickel Belt (Canada), characterise hydro-
thermal remobilisation of nickel and/or other metals and plat-
inum group elements (PGE) into the adjacent country rocks.
Finally, a study by Barrie et al. (2007) explored the presence
of hydrothermal halos around the River Valley, Ferguson Lake
(Canada) and Kabanga (Tanzania) deposits. Their results
highlight the presence of subtle anomalies in combined metal
and/or transition elements in country rocks, extending up to
several hundred meters away from massive sulphides.

The aim of this study was to evaluate whether a geochem-
ical halo was formed around the Sarah’s Find nickel deposit
during metamorphism and/or hydrothermal alteration and, if
present, determine its nature and extent. A structural study
was first carried out to determine the structural architecture
and provide a framework to constrain sample location and
subsequent data interpretation. Geochemical analyses were
then collected on targeted samples, using portable XRF and
pre-existing exploration assay data as an initial screen for
anomalous samples. Some of the samples containing anoma-
lous results that could represent hydrothermal remobilisation
of elements derived from the nickel sulphides were studied in
more detail (SEM-EDS, XRF mapping, LA-ICP-MS) in order
to identify mineral phases and their associations. Finally, all
the results were interpreted using information on the structural
setting and were plotted in a 3D model to determine the shape
and extent of the observed halo.

Geological setting

Regional geology and deformation history

The Sarah’s Find nickel deposit is located within the Mount
Keith Domain, in the AgnewWiluna Greenstone Belt (AWB)
which occupies the northern part of the Norseman-Wiluna
Greenstone Belt in Western Australia (Fiorentini et al. 2007)
(Fig. 1). The AWB is part of the Kalgoorlie Terrane, located
within the Eastern Goldfields Superterrane, in the eastern part
of the Archaean Yilgarn Craton (Cassidy et al. 2006). The
AWB is bounded to the west by the Waroona shear zone
(Platt et al. 1978) and to the East by the Keith-Kilkenny tec-
tonic zone (Eisenlohr 1988). The AWB is one of the most Ni-
endowed belts in the world (Barnes and Fiorentini 2012a;

Barnes et al. 2007; Hronsky and Schodde 2006) and hosts
multiple nickel sulphide deposits such as Mount Keith,
Perseverance and Rocky’s Reward (Barnes 2006; Duuring
et al. 2010, 2012; Fiorentini et al. 2010b). The AWB is com-
posed of a narrow package of deformed and metamorphosed
supracrustal rocks trending NNW-SSE and bordered by gra-
nitic gneiss terrains (Duuring et al. 2010; Eisenlohr 1988).
This 2.7-Ga supracrustal sequence comprises felsic to inter-
mediate volcanic and volcanoclastic rocks, sulphidic cherts,
carbonaceous shales and laterally variable komatiites includ-
ing cumulates, thin spinifex-textured units and komatiitic ba-
salts (Fiorentini et al. 2007).

The Sarah’s Find nickel deposit is located in the northern
part of the Mount Keith Domain. The volcanological architec-
ture of the Mount Keith Domain has been studied by many
researchers over the years (Burt and Sheppy 1975; Dowling
and Hill 1990; Hill et al. 1995; Rosengren et al. 2005, 2007).
The Mount Keith Domain contains three ultramafic layers
from bottom to top: (1) The Mount Keith Ultramafic unit
(MKU), (2) the Cliffs Ultramafic unit (CLU) and (3) the
Monument Ultramafic unit (MU). These three ultramafic ho-
rizons are separated by a variably deformed sequence of felsic
and mafic rocks, ranging in composition from tholeiitic basalt

Granite / Gneiss
Greenstones
Olivine Orthocumulate
Spinifex-Textured Flows

OlivineAdcumulate

200km

Perth

YILGARN
CRATON

STUDY
AREA

AUSTRALIA

0 50 km

Legend

Wiluna

Agnew

Mount Keith Domain
see close up in Figure 2

Fig. 1 Simplified geological map of the Agnew-Wiluna Greenstone Belt
(AWB), Western Australia, modified from Barnes et al. (2011) and
Fiorentini et al. (2007) after Hill and Gole (1990)

Miner Deposita



to dacite. Rosengren (2004) divided the Mount Keith
Ultramafic unit between the Mount Keith Complex and
Sarah’s Find into four sections referred to as pods and con-
strictions (Fig. 2). Sarah’s Find is located north of pod 2
(Fig. 2), in the most attenuated portion of the Mount Keith
Ultramafic Complex (∼70 m wide), where crosscutting faults
significantly disrupt the basal contact of the Mount Keith
Ultramafic unit (Fiorentini et al. 2007).

The structural history of the East Yilgarn Craton has been
addressed by Swager (1997) who summarised 10 years of
prior research by many different authors (Archibald et al.
1978; Hammond and Nisbet 1992; Platt et al. 1978;
Williams and Whitaker 1993). Blewett et al. (2010) presented
a structural-event framework, based on another decade of re-
search, incorporating six phases of deformation: (D1) ENE-
WSW extension, (D2) ENE-WSW contraction, (D3) exten-
sion, (D4) (a and b) contraction and strike slip movement,
(D5) NE-SW compression and dextral strike-slip and finally
(D6) low strain vertical shortening. The D4b episode is
interpreted as being the event during which most of the gold
was deposited (Blewett et al. 2010). TheMount Keith Domain
has undergone mid- to upper greenschist facies metamor-
phism (Barrett et al. 1977) and illustrates the entire deforma-
tion sequence as described by Swager (1997) and Blewett
et al. (2010).

Geology and deformation history of the Sarah’s Find
deposit

The Sarah’s Find nickel deposit is composed of very small
lenses (1–2 m wide) or stringers (10–20 cm) of massive sul-
phides mostly located at the basal contact between the Mount
Keith ultramafic unit and the Mount Keith dacite footwall.
Few stringers of sulphides are also present within the footwall
dacite (Fig. 3, long section BB′). The massive sulphides at
Sarah’s Find consist of a pyrrhotite-pentlandite assemblage
with small (<5 %) and variable amounts of chalcopyrite. The
Mount Keith Ultramafic unit is almost entirely composed of
olivine cumulates, predominantly olivine adcumulates, rich in
magnesium (Fo=92 to 94) (Barnes et al. 2011; Rosengren
et al. 2007). Adcumulate-textured pods and lenses, particular-
ly abundant in the thickest parts of the unit, are flanked by
laterally extensive meso- and orthocumulate textured units.
The massive sulphide lenses are overlain by laterally discon-
tinuous pyroxenite and peridotite horizons (Brand 1993), and
the upper portion of the peridotite unit (olivine orthocumulate)
grades upward into a thin dunite layer (olivine adcumulate)
that hosts pods of disseminated nickel sulphides (Fiorentini
et al. 2007). A thin pyroxenitic layer is locally developed at
the upper contact of the Mount Keith Ultramafic unit (Gole
et al. 2013). Crosscutting faults significantly disrupt the basal
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Fig. 2 a Detailed geology of the Mount Keith ultramafic complex (from
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contact of the Mount Keith Ultramafic unit which is entirely
tectonic. The dacitic unit in the stratigraphic footwall has un-
dergone polyphase deformation and alteration (Rosengren
et al. 2008) including intense schistose to mylonite fabrics
and alteration of the metamorphic minerals assemblage of
quartz, sericite, chlorite, epidote (after plagioclase) and minor
late crosscutting calcite veins (Fig. 4a–d). The footwall dacite
is interpreted as a series of submarine lavas with associated
volcaniclastic rocks (Rosengren et al. 2008).

Laboratory analyses were carried out on mineralised sam-
ples from the Sarah’s Find massive sulphides (Table 1). The
massive sulphide lenses at Sarah’s Find, which are located at
the contact with the footwall dacite, are relatively low in PGE
compared to disseminated ores in the MKD5 ore body at
Mount Keith and other komatiite-hosted nickel sulphide de-
posits (Barnes and Fiorentini 2012a), with average values of
139±74 ppb IPGE (Ir, Ru and Os) and 1179±1091 ppb PPGE
(Pd, Pt, Rh and Au) (Fig. 5a, b). Platinum values within the
ore show similar variations to other komatiite-hosted nickel

sulphides (Fig. 5b), typically modelled as a consequence of
variable silicate/sulphide mass ratio (R-factor) (Campbell and
Naldrett 1979). However, Pd in the massive sulphides is very
variable and does not follow expected R-factor trends
(Fig. 5a). A similar observation can be made when studying
the correlation between Pd and Pt (Fig. 5c). Finally, a good
correlation is observed between Pd and As (Fig. 5d).

The structural history of the Sarah’s Find deposit has not
previously been studied in detailed. Hayward (2004) locally
describes five stages of deformation at Mount Keith. D1MK

and D2MK (where the suffix MK indicates that the terminolo-
gy applies specifically to theMount Keith areas, not to the belt
as a whole) represent ENE-SWS shortening resulting in NNW
upright folding (D1MK) and the formation of reverse sinistral
wrenches and faults (D2MK). At Mount Keith, D3MK is
characterised by minor recumbent folds, and D4MK produced
NNE conjugate reverse faults and thrusts associated with the
formation of most of the Yilgarn’s gold. Finally, D5MK is
characterised by NNE-trending dextral faults.
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The results of our structural study show that the footwall
contact at Sarah’s Find is sheared and strongly altered to a
chlorite-dominated assemblage and commonly obscured due
to the presence of mafic dikes (Fig. 6, drill hole MKTD21). In
the northern part of the deposit where massive sulphides are
present, the footwall contact is undulating and steeply dipping
(Fig. 6, drill hole MKTD21). Towards the south-west, the
contact has a much shallower dip (Fig. 6, drill hole
MKTD672).

Themainmassive sulphide bodies are located at the contact
between the footwall dacite and the Mount Keith komatiites,
where they have been sheared in a direction sub-parallel to the
dominant foliation, itself folded into broad asymmetric folds.
In some drill holes, this folding resulted in the apparent repe-
tition of the massive sulphides (e.g. drill hole MKTD21,
Fig. 6). Occasional very thin (10–20 cm thick) massive sul-
phide occurrences can also be found within the dacite, close to
the footwall contact (drill holes MKTD23 and MKTD37).
These thin sulphide lenses observed within the dacite footwall
are in close proximity to the mineralised contact and are sub-
parallel to the ductile fabric foliation.

The dominant foliation has a strike to the NNW, dipping
to the WSW, but it can also trend NE, ENE and NW
(Fig. 7a)—these variations are probably linked to large-
scale flexures of the foliation caused by subsequent defor-
mational events. The foliation has a strong mineral and

stretching lineation defined by elongated plagioclase and
quartz phenocrysts (Fig. 7c). Arsenopyrite grains, as well
as other small sulphides, were observed to lie on foliation
planes and to be elongated parallel to the stretching linea-
tion (Fig. 7b). This lineation has a dominant rake shallowly
to the SSE (mean of 26/ 175; Fig. 7g). Extensive kinematic
markers indicate a dextral sense of shearing (Figs. 4d and
7e), for the current dominant SSW dip of the foliation and
a small component of reverse movement. All measure-
ments taken as part of the structural study are tabulated in
Electronic Supplementary Materials (ESM) Table S1,
along with a description of the methods used.

A set of late crosscutting dextral faults have been mapped
regionally in the Mt Keith area (Hayward 2004). However,
late-stage crosscutting faults were only occasionally observed
in the drill core through the Sarah’s Find deposit. In most
areas, the transition between ultramafic and dacite units was
within the ductile shear zone, with lithological contacts sub-
parallel to the foliation. Brittle juxtaposition of the units was
not commonly observed. There are minor occurrences of mas-
sive sulphides that are substantially off the main ultramafic–
dacite footwall contact (drill holes MKTD544, MKTD543,
MKTD619, MKTD21). These off contact sulphides transect
the dominant foliation (Fig. 6d) and have been interpreted as
being the product of late-stage remobilisation post-ductile
shearing of massive sulphides.
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Results

A major metasomatised zone was identified at Sarah’s Find at
the contact between the Mount Keith komatiites and the Mount
Keith footwall dacite. Twenty-five drill holes crosscutting the
footwall contact and spread over 2 km, going from the Sarah’s
Find massive sulphides (MKTD19, MKTD21 and MKTD14
crosscutting massive sulphides) to 1.5 km away from these
massive sulphides (MKTD675), were selected for detailed
relogging, structural study and sampling of the footwall contact
area in order to detect the presence of a possible geochemical
halo (Fig. 3). One hundred and twenty-six samples were col-
lected and sent to Ultra Trace laboratories in Perth, Australia,
for geochemical analyses, and 31 samples (from 17 different
drill holes) were collected for portable XRF (pXRF) analyses.

Portable XRF and laboratory analyses

The concentrations of As, Ca, Cr, Cu, Fe, K, Mn, Ni, S, Si, Sr,
Ti, Zn and Zr were determined by pXRF on lightly polished
core surfaces for all the samples collected along the footwall
contact. Analyses were collected following the analytical
protocol from Le Vaillant et al. (2014) and described in ESM.
The lithology associated with each analysis was determined
using a Cr-Ti-Zr ternary diagram (Fig. 8, Hallberg 1984),
allowing clear distinction between ultramafic rocks and felsic
volcaniclastic lithologies. Results obtained with both laboratory
analyses and pXRF show a tight cluster for the two lithologies.
Moreover, analytical results for dacite samples at Sarah’s Find
correlate well with results from regional studies of dacite com-
position in the Eastern Goldfields Superterrane (Barley et al.
2008; Cassidy et al. 2006; Fig. 8). Results obtained from this
regional dataset are used to evaluate background concentrations
of Ni in the dacite footwall. For the purpose of this study,
concentrations above 140 ppm, representing the 90th percentile
on the nickel concentrations of the dacite across the craton
(from the database of Barnes and Van-Kranendonk 2014), were
considered as anomalous.

Both pXRF and laboratory XRF analyses on dacite sam-
ples from the Sarah’s Find deposit yielded similar results
(Fig. 9) (comparison study illustrated in ESM, Fig. S1 and
Table S4; all pXRF and laboratory results are also tabulated
in ESM Table S2c and Table S3a). Out of 80 dacite samples,
35 contain nickel concentrations above 150 ppm, with values
ranging from 150 ppm to 1.2 wt% Ni. Within the pXRF anal-
yses collected on dacite samples, seven analyses, collected on
four different samples, show nickel values above 150 ppm,
with values ranging from 245 to 2875 ppm Ni. These anom-
alous nickel concentrations are associated with elevated
values in sulphur, copper and often arsenic (ESM Table S3b).

Analyses with elevated nickel concentrations are located
either at the contact between the Mount Keith komatiites and
the footwall dacite, or within 10 m of it. Six samples containT
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small amounts of nickel sulphides. The two samples with
elevated Ni concentrations are MKTD23-302.65 and
MKTD506-276.8.MKTD23-302.65 is located less than a me-
ter away from massive sulphides, next to a thin sulphide
stringer hosted by the dacite, close to the footwall contact
(Fig. 10a).MKTD506-276.8 is located exactly on the footwall
contact but over 50 m away from intersected massive sul-
phides. None of the other samples with nickel concentrations
over 150 ppm contain visible nickel sulphides (Fig. 10b–e).

Forty-two of the dacite samples were also analysed for
PGE. Figure 11 shows the results obtained for Pd, Pt and
Ru. Twenty-five out of the 42 samples analysed have PGE
concentrations below detection limit, but 12 contain Pd con-
centrations ranging from 6 to 3160 ppb. These high Pd con-
centrations also correspond to high Pt concentrations, ranging
from 3 to 154 ppb, and correlate with high nickel concentra-
tions (110 to 2875 ppm Ni). Interestingly, Pd is systematically
more enriched than Pt, contrasting with usual magmatic pro-
portions of 1 to 1 (ESM Table S3b).

Apart from a correlation between Na and K and a weak
relationship between elevated Ni values and elevated Na, ma-
jor element analyses in dacite do not show detectable system-
atic changes that were observed either in the variation of

concentrations relative to the distance to the massive sulphides
or in the combined variations of the various elements.

Mineralogy of the samples containing anomalous nickel
concentrations (micro XRF mapping, SEM-EDS, 3D
micro-tomography)

Four dacite samples that were identified as containing anom-
alous nickel concentrations were studied by micro-XRF map-
ping, SEM-EDS analyses, petrographic studies and electron
microprobe analyses, in order to identify spatial relationship
between nickel and other elements and to determine the min-
eral phase(s) hosting the nickel. Results of this study show that
the anomalous nickel is mainly present as nickel sulfarsenides
(gersdorffite NiAsS) and pentlandite ([Ni,Fe]8S9). Two types
of settings and associations are observed:

1. The BSulphide type^ is composed of nickel sulphides and
sulfarsenides, varying in size from 5 to over 150 μm di-
ameter, associated with other sulphides (pyrrhotite, minor
chalcopyrite and galena) and forming small sulphide
stringers (Figs. 12 and 14a–c). These sulphide stringers
do not follow the foliation.
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2. The Bfoliation type^ is composed of nickel sulphides and
sulfarsenides, smaller in size, between a few microns to

50 μm in diameter, concentrated within the foliation, typ-
ically elongated along the lineation, and associated with

a

b

c

e

d

Fig. 6 Detailed structural logs of drill holes: MKTD21 intersecting the Sarah’s Find massive sulphides, MKTD533A intersecting the barren footwall
contact 90 m below the massive sulphides, and MKTD672 intersecting the footwall contact 1.5 km south of the Sarah’s Find massive sulphides

g

f

c

d e

a bFig. 7 Illustration of the various
structures observed and measured
within the Mount Keith footwall
dacite. a Stretching lineation of
the plagioclase phenocrysts, b
arsenopyrite grains observed
aligned along the foliation, c, d
evidences of stretching and e
rotated quartz phenocryst, dextral
movement. f, g represent all the
foliation and lineation
measurement taken on the Mount
Keith dacite. Asp Arsenopyrite
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other small sulphides also concentrated within the folia-
tion (pyrrhotite, minor pyrite and chalcopyrite, and rare
sphalerite and galena) (Figs. 13 and 14d–f). In this second
setting type, nickel sulfarsenides are dominant. The align-
ment of the sulphides and sulfarsenides along the foliation
is shown in 2D and 3D in Fig. 13.

Mineral chemistry of the Ni-Co sulfarsenides

The Ni-Co sulfarsenides present in the footwall dacite in
both the Bsulphide^ and Bfoliation^ type occurrences were
analysed by electron microprobe (details in ESM),
highlighting the variations between the two types: (1)
the small nickel sulfarsenides of the foliation type are
cobalt-rich (27–31 wt%), nickel-poor (1.7–4 wt%)
gersdorffites, whereas (2) the larger nickel arsenides of
the sulphide type are generally more cobalt-poor (2–
16.5 wt%), nickel-rich (12.6–24.6 wt%) gersdorffites
(Fig. 15). Both types of gersdorffite can be found in the
same sample such as in MKTD506-273 (Fig. 14b and c
sulphide-associated type, d foliation-associated type).
Within the sulphide type (nickel-rich gersdorffites), there
are variations between Ni and Co compositions between
the two samples (MKTD19-281 and MKTD506-273). In
sample MKTD19-281, within the sulphide stringers, very
close to the massive sulphides, both cobalt- and nickel-
rich gersdorffites are present. In contrast, in sample
MKTD506-273, the gersdorffites located further away
from known massive sulphides (50 m) are nickel-rich/co-
balt-poor. Foliation type gersdorffites are consistently Co

rich, whereas sulphide type gersdorffites show more var-
iable contents in Ni and Co.

In situ analyses for PGE by Laser Ablation ICP-MS of
gersdorffites were collected at the University of Quebec in
Chicoutimi (UQAC), Canada (details of the analytical
protocol can be found in ESM, and all the results are
tabulated in Table S5c). All the results are plotted in Fig. 16,
as spider diagrams comparing the variations between the two
gersdorffite types. IPGE are generally low, and their concen-
trations do not vary much between samples even though sul-
phide type gersdorffites show slightly higher concentrations.
Combining all the analyses, concentrations of IPGE (Ir + Os +
Ru) vary between 0.67 and 3.53 ppm. In contrast, PPGE (Pt +
Pd) vary widely in composition between samples.
Sulphide type gersdorffites contain higher concentrations of
Pd with average values for the two samples of 11.8 and
350 ppm Pd, whereas foliation type gersdorffite show average
concentrations between 0.99 and 1.8 ppm Pd. In contrast, Pd
and Au concentrations are higher in the foliation type
gersdorffites (average between 2.4 and 3.45 ppm Au) than
the sulphide type ones (averages of 0.3 and 2.2 ppm Au).
Platinum values are very low within foliation type
gersdorffites (averages between 0.13 and 0.2 ppm Pt) and
slightly higher within sulphide type ones (averages of 0.16
and 1.9 ppm Pt). However, Pt values are very heterogeneous
within the analysed gersdorffites, and the study of the laser
ablation spectra allows the interpretation of Pt being mostly
located in small inclusions rather than in the lattice of the
grains, in contrast to Pd. Several small PGE-rich inclusions
were found within both gersdorffites types but especially in
one sample (MKTD19-281) located very close to the massive
nickel sulphides.

Zr (ppm) * 50

Cr (ppm) * 10 Ti (ppm)

90th, 80th and 50th 
percentiles on data 

density regional 
dacite (100 analyses)

Footwall dacite

Mount Keith komatiites 

Disseminated or massive 
sulphides

Portable XRF analysis

Laboratory analysis

Fig. 8 Ternary diagram used to
validate the rock identification
and lithologies attributed to the
various pXRF and laboratory
analyses. The density contours
were produced on data density
plots for regional dacite with a
dataset composed of 100 analyses
of dacite samples from the
Kalgoorlie South greenstone belt,
the Agnew-Wiluna greenstone
belt and the Kurnalpi greenstone
belt (dataset from Barnes and
Van-Kranendonk 2014)
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Correlations between the various PGE concentrations were
studied for the various samples (Table 2). Within MKTD19-
281, located close to the massive sulphides and containing
sulphide type gersdorffites, a strong correlation between Pd
and Sb (RPd/Sb=0.73) is observed; in contrast, Au is correlated
with Pt (RAu/Pt=0.55) and with Sb (RPt,Au/Sb=−0.56). Within
MKTD506-273, which also contains sulphide type
gersdorffites, a good correlation between the various IPGE is
observed. Finally, within foliation type gersdorffites, two cor-
relations are observed, between Pt and Os-Ir (RPt/Os=0.72 and
RPt/Ir=0.51) as well as between Rh and Au (RRh/Au=0.65).

3D data presentation

The results presented above establish the presence of associated
anomalous concentrations of nickel, arsenic, palladium and co-
balt within the footwall dacite, close to the footwall contact. To
verify this association, a spatial relationship between the anom-
alous concentrations and the deposit scale arsenic metasoma-
tism needed to be established. A 3D model was constructed,
combining (1) the distribution of the arsenic at Sarah’s Find
with the structural measurements collected and (2) the location
of geochemical samples exhibiting anomalous Ni, Co and Pd.
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An interpolation of the arsenic concentrations was conduct-
ed using ordinary kriging (OK) and a structural trend corre-
sponding to the measured foliation within the dacite
footwall (foliation hosting arsenopyrite and nickel
sulfarsenides grains, details on interpolation can be found in
ESM). Arsenic concentrations are particularly elevated (As
above 10 ppm) along the sheared footwall contact and close
to the Sarah’s Find massive sulphides (Fig. 17), with elevated
arsenic concentrations extending into the footwall dacite.
However, care must be taken when interpreting arsenic con-
centrations of the dacite footwall far from the footwall contact
since assay sampling done by BHP Billiton is limited to less
than 20 m after intersection of the footwall contact. Areas of
elevated arsenic are also observed within the Mount Keith

ultramafic unit, possibly indicating the presence of internal
shearing. The spatial distribution of anomalous Ni, Pd and
Co correlates well with the distribution of As (Fig. 17), and
samples containing both anomalous arsenic and nickel (As>
10 ppm and Ni>150 ppm) are concentrated close to the mas-
sive sulphide lenses but also along the sheared footwall con-
tact. Sample MKTD675-721 (Fig. 5), which contains
198 ppm Ni and 131 ppm As, is located on the sheared foot-
wall contact and represents the dacite sample that was collect-
ed the farthest away, 1780 m, from the massive sulphide
lenses. Interestingly, samples containing anomalous nickel
concentrations (above 150 ppm) but arsenic below 10 ppm
are usually located less than 40 m away from the Sarah’s
Find massive sulphides.

Discussion

This study has documented the presence of anomalous
concentrations of Ni, Pd, Pt and Co within the footwall
dacite, notably along the footwall contact. These anomalies
extend up to 1780 m away from the massive sulphides.
Detailed study of anomalous footwall dacite samples
shows that elevated Ni, Pd and Co are associated with the
presence of either tiny sulphide stringers containing pyr-
rhotite, pentlandite, gersdorffite and minor chalcopyrite
and galena, referred to as the sulphide type, or with the
presence of small gersdorffites and sulphide grains (mainly
pyrrhotite, minor pentlandite, chalcopyrite, galena) lying

dcba e

Fig. 10 Photomicrographs of dacite samples containing anomalous
nickel concentrations
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samples
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along the foliation planes, referred to as the foliation type.
The spatial study of Ni, Pd, Co and As concentrations
emphasises the presence of these two types of association
and their spatial occurrences. The high Ni concentrations
observed close to the massive sulphides lenses are not nec-
essarily associated with very elevated arsenic and can be
related to the presence of sulphides and sulfarsenides asso-
ciated with both the sulphide and foliation type occur-
rences close to the massive sulphides. In contrast, the high
Ni concentrations systematically associated with elevated
As are located along the sheared footwall contact, up to
1780 m away from the sulphides, and are associated with
the foliation type occurrence.

The presence of these sulphide and sulfarsenides (of both
sulphide and foliation type) within the footwall dacite is
interpreted as being the result of the combined action of phys-
ical and hydrothermal remobilisation of the Sarah’s Find mas-
sive sulphides. Sulphides present as very thin lenses within the
dacite close to the footwall contact, and sulphides and
sulfarsenides present in micro-scale stringer veins (sulphide
type), where a clear association between sulphides and nickel
sulfarsenides can bemade, are interpreted as being the product
of physical remobilisation of the massive sulphides. Within
the foliation type occurrence on the other hand, most of the

nickel is contained within nickel sulfarsenides, which are
not associated with nickel sulphides; the anomalous nickel
cannot be accounted for by physical remobilisation of the
massive sulphides. Foliation type nickel sulfarsenides are
interpreted as being the product of hydrothermal
remobilisation of nickel by arsenic-rich hydrothermal
fluids.

The observed elevated Ni and Co concentrations are also
associated with anomalous Pd concentrations. In situ LA-ICP-
MS analyses of both sulphide and foliation types nickel
sulfarsenides indicate the presence of Pd in solid solution
within the lattice of the grains. Palladium concentrations
(as well as Pt concentrations) vary between the two differ-
ent types of nickel sulfarsenides, with more elevated values
observed for sulphide type sulfarsenides compared to
foliation type sulfarsenides. However, Pd values, as well
as Pt values, which are generally much lower, vary signif-
icantly between the different analysed samples. These var-
iations are interpreted as small-scale, local variations of
rock composition, fluid flow and fluid chemistry.
Anomalous Pd values associated with Ni, Co and As in
dacite samples collected along the sheared footwall contact
and close to the massive sulphides are attributed to the
presence of Pd within the sulfarsenides.
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Fig. 12 Detailed study of sample
MKTD560-273 showing
anomalous concentrations of Ni,
As, Co and Pd. a Three elemental
(Ni, As, S) map obtained by
micro-XRF mapping. b–d are
petrographic reflected light
photomicrographs of MKTD506-
273. Ccp chalcopyrite, Ger
gersdorffite, Pn pentlendite, Po
pyrrhotite
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Source of Ni, Co and Pd

For the sulphide type gersdorffites, the source is interpreted to
be small lenses of massive sulphides which have been physi-
cally remobilised into the footwall dacite. For the
foliation type gersdorffites, the source is not as obvious.
There are three possible sources for the anomalous Ni and
Co concentrations detected where foliation type gersdorffites
are present: (1) derivation from deep or distal sources on re-
gional scale via the hydrothermal fluids, (2) the massive nickel
sulphides and (3) the Mount Keith komatiites.

The arsenic metasomatism observed around the Sarah’s
Find prospect and within the footwall dacite has a larger extent
than the observed Ni-Pd-Co halo, and multiple dacite samples
show high As but no anomalous Ni and Co. If the arsenic-rich
hydrothermal fluids are the medium that created the Ni- Co
halo around the Sarah’s Find deposit, this absence of anoma-
lous Ni and Co in arsenic enriched dacite samples argues
against the distally derived As-rich hydrothermal fluids being
the source of the anomalous nickel.

The two possible remaining sources for the Ni and Co
are the Mount Keith komatiites and the massive sul-
phides. The distinguishing characteristic of the massive
nickel sulphides compared to the host ultramafic rocks is
their enrichment in PGE. The unmineralised Mount
Keith ultramafic unit is composed of olivine cumulates,
which would be expected to contain no more than 2 ppb
each of Pt and Pd (Fiorentini et al. 2010a). The Sarah’s
Find massive sulphides have average PGE concentra-
tions, in a 100 % sulphides, of 167±74 ppb (median±
SD) combined IPGE (Ir + Os + Ru) and 1165±1,091 ppb
combined PPGE (Pd + Pt + Rh). The results of LA-ICP-
MS analyses of the gersdorffites demonstrate the pres-
ence of Pd within them. Moreover, a good spatial asso-
ciation between high Pd concentrations and anomalous
nickel concentrations is observed within the footwall
dacite especially close to the footwall contact. These ob-
servations confirm that the Ni and Pd were probably
remobilised together. On this basis and given the spatial
association of the Ni-As-PGE anomalism with proximity
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Fig. 13 Micro-XRF elemental map (a), petrographic reflected light photomicrographs (b, c) and snapshot of the 3D microtomograph of sample
MKTD23-303 (d, e). Ccp chalcopyrite, Ger gersdorffite, Pn pentlendite, Po pyrrhotite
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to the ores and absence of this anomalism in the more
distal samples, it is concluded that the Sarah’s Find mas-
sive sulphides are the most likely source of Ni, Co and
Pd, with the arsenic being derived from regional hydro-
thermal fluids.

Geometry of the hydrothermal halo

The geochemical Ni-Co-Pd-As halo observed around the
Sarah’s Find massive sulphides is interpreted as being the
results of small-scale physical remobilisation of the mas-
sive sulphides as well as larger scale hydrothermal
remobilisation of Ni, Co and Pd from the massive sul-
phides along the sheared footwall contact extending up
to 1780 m away. Three-dimensional visualisation of the
geochemical results and of the As distribution in the sys-
tem supports this interpretation. Arsenic is elevated espe-
cially in close contact to the massive sulphides, which are
an ideal source of S, Ni and Fe to form gersdorffite. The
As-rich hydrothermal fluids are interpreted as circulating
along the sheared footwall contact, since elevated arsenic
concentrations are located along it. Moreover, since the
gersdorffites deposited by these As-rich fluids are concen-
trated within the foliation and elongated along the mea-
sured mineral and stretching lineations (Fig. 12d, e), cir-
culation through the system can be interpreted as being
synchronous with the deformation that was responsible
for the dominant foliation observed at Sarah’s Find.

Anomalous gold present in the arsenic-rich samples (12
to 230 ppb) and in the nickel sulfarsenides (0.01 to
421 ppm) suggests that these As-rich fluids are most like-
ly associated with fluids associated with orogenic gold
systems (Hedenquist et al. 2005).
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Fig. 14 Reflected light photomicrographs. a–c represent typical mineral
associations and textures observed in samples containing sulphide-
associated nickel sulfarsenides, whereas d–f represent typical mineral
associations and textures observed in samples containing foliation-

associated nickel sulfarsenides. a Sample MKTD19-281A, b sample
MKTD506-273A, c sample MKTD506-273B, d sample MKTD506-
273C, e sampleMKTD23-303A and f sampleMKTD23-303C.Ccp chal-
copyrite, Ger gersdorffite, Pn pentlendite, Po pyrrhotite
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Source of the arsenic

The arsenic-rich fluids that circulated through the system
could be associated with the regional orogenic gold event that

Groves et al. (2003) linked with the circulation of crustal
fluids. However, few crustal rock types can represent a
realistic source of arsenic. Boyle and Jonasson (1973)
studied the global distribution of arsenic and its abundance
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in various rock types. The most endowed source of arsenic
in the regional setting where the Sarah’ Find deposit is
located would be the black shales present in the country
rocks. Samples from the Cobalt area, Ontario, of a similar
Archaean lithology, yielded an average concentration of
80 ppm As (Boyle and Jonasson 1973). Furthermore, later
studies by Quinby-Hunt et al. (1989) and Ketris and
Yudovich (2009), on the world wide composition of shales,
yielded average concentrations of 29 and 30 ppm As for
carbonaceous shales, representing about 16 times the nor-
mal crustal average of 1 to 4 ppm As only (Large et al.
2011). Therefore, at Sarah’s Find, there is enough crustal
arsenic available to produce the arsenic-rich hydrothermal
fluids responsible for the observed halo.

Practical application to exploration

The first step in using this Ni-Co-Pd-As geochemical halo as
an exploration tool is the collection of Ni, Co and As assays in
country rocks along contacts and major structures, instead of
the normal practice of analysing these elements in ultramafic
rocks only. Combined with a good understanding of the struc-
tural controls (faults, folds and foliation) and background
composition of As, Ni, Co of the various country rock lithol-
ogies, this dataset can be used to produce a 3D model of the
Ni, Co and As halo aroundmassive nickel sulphides.With this
3D model, targets can be prioritised: High As, Ni and/or Co
would be higher prospectivity area and high As but low Ni
and/or Co being lower prospectivity areas. At Sarah’s Find,

Table 2 Correlations between the various PGE concentrations within these nickel sulfarsenides

Pd Pt Rh Ru Os Ir Sb Au As
Pd 1 0.06 0.57 -0.18 0.22 0.10 -0.06 0.20 -0.01

Pt 0.06 1 -0.08 -0.14 0.72 0.51 0.18 -0.11 0.23

Rh 0.57 -0.08 1 -0.24 0.35 0.10 -0.13 0.65 0.21

Ru -0.18 -0.14 -0.24 1 -0.14 -0.10 -0.25 -0.06 -0.57

Os 0.22 0.72 0.35 -0.14 1 0.52 0.07 0.45 0.38

Ir 0.10 0.51 0.10 -0.10 0.52 1 0.19 0.02 0.17

Sb -0.06 0.18 -0.13 -0.25 0.07 0.19 1 -0.15 0.44

Au 0.20 -0.11 0.65 -0.06 0.45 0.02 -0.15 1 0.34

As -0.01 0.23 0.21 -0.57 0.38 0.17 0.44 0.34 1

Pd Pt Rh Ru Os Ir Sb Au As
Pd 1 -0.38 0.38 0.41 0.02 0.01 0.73 -0.27 0.82

Pt -0.38 1 0.19 -0.05 -0.06 0.01 -0.56 0.55 -0.17

Rh 0.38 0.19 1 0.31 0.01 0.24 0.22 0.22 0.34

Ru 0.41 -0.05 0.31 1 0.41 0.38 0.35 0.10 0.36

Os 0.02 -0.06 0.01 0.41 1 0.39 0.01 -0.10 -0.08

Ir 0.01 0.01 0.24 0.38 0.39 1 -0.09 0.00 -0.12

Sb 0.73 -0.56 0.22 0.35 0.01 -0.09 1 -0.24 0.61

Au -0.27 0.55 0.22 0.10 -0.10 0.00 -0.24 1 -0.11

As 0.82 -0.17 0.34 0.36 -0.08 -0.12 0.61 -0.11 1

Pd Pt Rh Ru Os Ir Sb Au As
Pd 1 0.22 0.45 -0.07 0.40 0.24 -0.14 0.13 0.38

Pt 0.22 1 0.03 -0.21 0.28 -0.06 0.06 0.49 0.13

Rh 0.45 0.03 1 0.19 0.54 0.33 0.05 0.00 -0.02

Ru -0.07 -0.21 0.19 1 0.35 0.60 -0.58 -0.08 -0.66

Os 0.40 0.28 0.54 0.35 1 0.75 0.02 0.49 0.13

Ir 0.24 -0.06 0.33 0.60 0.75 1 -0.23 0.06 -0.07

Sb -0.14 0.06 0.05 -0.58 0.02 -0.23 1 0.24 0.61

Au 0.13 0.49 0.00 -0.08 0.49 0.06 0.24 1 0.22

As 0.38 0.13 -0.02 -0.66 0.13 -0.07 0.61 0.22 1

"foliation-associated" arsenides (n= 45)

"sulphide-associated" arsenides - sample MKTD19-281 (n= 38)

"sulphide-associated" arsenides - sample MKTD506-273A (n= 27)
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this Ni-Co-Pd-As halo seems to be very localised close to the
footwall contact, which represents a dominant shear zone, and
possibly the main pathway for the arsenic-bearing hydrother-
mal fluids. Importantly, a low As and Ni-Co signal should be
considered as neutral, on the grounds that Ni hydrothermal
remobilisation is only observed within zones of arsenic en-
richment. Understanding the regional and local structural,
metamorphic and hydrothermal overprint is crucial.

The distance over which the geochemical halo can be
traced seems to differ for pXRF and laboratory XRF, depend-
ing on the deposit studied. This difference can be attributed to
variations in analysed volumes, to the distribution of the sul-
phides and arsenides in the rock, and to the in sensitivities of

the two instruments. At the Miitel deposit, Widgiemooltha
Dome, Western Australia, hydrothermally remobilised nickel
arsenides are concentrated within small veins which give rise
to very anomalous NiAs signals when analysed by pXRF, but
which give diluted signal when sent as meter-long samples to
the laboratory (Le Vaillant et al. 2015). At Sarah’s Find, the
nickel arsenides are dispersed throughout the rock within the
foliation; therefore, it is difficult to pick an anomalous NiAs
signal with pXRFwhich only analyses a very small volume of
rock, whereas laboratory analyses will pick up all of the nickel
arsenides present within the sample. At Sarah’s Find, labora-
tory analyses were able to detect the Ni-Co-Pd-As anomaly
farther away from the massive sulphides (over 1500 m),
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whereas pXRF served as an efficient tool to detect the Ni-As
halo when located at a relatively small distance to the massive
sulphides (less than 80 m) where nickel arsenides were more
concentrated and associated with mechanically sheared
sulphides.

Conclusion

A Ni-Co-Pd-As geochemical halo is present around massive
nickel sulphides at the Sarah’s Find nickel deposit. This halo is
interpreted as being the result of physical remobilisation (solid
state) and hydrothermal remobilisation of nickel, cobalt and
PGE from the massive sulphides. A block diagram synthesiz-
ing spatial information and presenting the interpreted shape of
this geochemical halo is presented in Fig. 18. Physical
remobilisation of the massive sulphides is observed up to
100–150 m away from the massive sulphides within the foot-
wall dacite, along the contact with theMount Keith Ultramafic
Unit, parallel to the direction of shearing. Nickel, cobalt and
PGE (mainly Pd and little Pt) are interpreted as being hydro-
thermally remobilised by syn-deformation As-rich hydrother-
mal fluids. These As-rich fluids, likely related to a regional
orogenic gold event, collected Ni, Co and Pd from the Sarah’s
Find massive sulphides and redeposited them as gersdorffites
within the sheared footwall dacite, along the dominant NNW
striking foliation, creating a geochemical halo extending along
the direction of shearing up to 1780 m away from the massive
sulphides. The extent of this Ni-Co-Pd-As halo is larger than
any geochemical tool currently used for nickel sulphide ex-
ploration targeting. A geochemical halo similar to the one
described in this paper was observed around the Miitel de-
posits (Le Vaillant et al. 2015) and could potentially exist
around any type of magmatic nickel sulphide that has under-
gone of arsenic metasomatism.
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